

CLEANTECH LANDSCAPES

TRENDS IN
GREEN
HYDROGEN

Drivers of the Hydrogen Economy

¹ no carbon, high energy density (by weight)

Source: CleanTech Capital Advisors

Hydrogen Categories

"Hydrogen Economy" relates to "Blue" & "Green" H2

While 100% CCS doesn't exist, Blue H2 is generally seen as an acceptable transition to Green H2

Its greater purity makes Green H" more suitable for fuel cells

¹ with ideally 100% carbon capture is "carbon-neutral"; in reality is "low-carbon" (60%-90%)

Hydrogen Economy Supply Chain

The H2 supply chain involves principally

- Production
- Transport
- Storage

Many different supply chain options exist and will co-exist for the HE

Source: DNV GL

Hydrogen Production Methods

Multiple existing and emerging pathways for high-volume production of H2

Steam reforming (SMR) if hydrocarbons is the dominant method today

Source: The World of Hydrogen

Current Hydrogen Applications

Chemicals (fertiliser) & Oil Refineries the principal consumers of H2 today

Source: DECHEMA: US DoE: Fair-PR: Linde

Hydrogen Market Potential Size

Most observers expect the H2 market to become very large, approaching traditional fossil fuel sector sizes

Estimated annual demand for H2 (2050) [Exajoule]

Current annual demand [Exajoule]

Hydrogen (Potential) Demand [EJ] - 2050

Growth is expected to come principally from new energy-related applications, in particular within Transport & Industrial sectors

Source: Hydrogen Council

Long-Term Competitiveness Trajectory

Heavy duty vehicles and Industrial Heat expected to be among leading initial applications for HE

Hydrogen is competitive in

Source: Hydrogen Council

HYDROGEN ROLLOUT ROADMAP

HE rollout is a multi-decadal process

Major H2
adoption
expected to
start with
passenger cars
& buses

¹ Defined as sales >1% within segment; ² Market share refers to feedstock amount produced from low-carbon sources; ³ BTX = benzene, toluene & xylene - market share refers to production % that uses hydrogen & captured carbon to replace feedstock; ⁴ Direct-reduced iron with green hydrogen, iron reduction in blast furnaces & other low-carbon processes using hydrogen *Source: McKinsey*

Hydrogen & Electricity in Energy Ecosystem

H2 & electricity are highly synergistic in the broader energy ecosystem ...

... though potential competitors in specific segments & applications

Source: Toyota Motor Company

Breakeven Costs FCEV vs. BEV1

Fuel cell EVs are most competitive on a TCO basis with battery EVs over longer driving ranges

Source: IEA; BNEF

¹ e.g. for a range of 400km, to break even with battery costs below USD 100/kWh could require achieving fuel cell costs below USD 60/kW; 2 battery price years forecast by BNEF

HYDROGEN DELIVERY & STORAGE

Source: The World of Hydrogen

Application Competitiveness - Production¹

The most attractive segments for H2 still require steep costdowns

H2 starts to be very competitive across a range of applications around US\$2-3/kg (production cost)

¹ vs. low-carbon alternative in segment (regions assessed are US, China, Japan/Korea & Europe); ² Transportation segments breakeven calculated on weighted average

Electrolyzer Technologies - Comparison (2020)

While Alkaline electrolyzers are the incumbent, **PEM** has many inherent advantages

	#1	#2	#3
Maturity	AEL	PEM	SOEC
Efficiency	SOEC	AEL	PEM
Stack Lifetime	AEL	PEM	SOEC
Simplicity	PEM	AEL	SOEC
Response Time	PEM	AEL	SOEC
Safety	PEM / AEL		SOEC
Footprint	PEM	AEL	SOEC
CapEx	AEL		SOEC
Peak Power	PEM	AEL	SOEC
Min Power	PEM	AEL	SOEC

Note: AEL = electrolysis, PEM = proton exchange membrane, SOEC = solid-oxide electrolysis cells

Source: TNO

Electrolyzers - Cost Curves

Source: Gunther Glenk and Stefan Reichelstein

DEDICATED TO CLEANTECH & RESOURCE EFFICIENCY GROWTH

Ben LynchManaging Partner

Tel.: +44 7852 211 278

ben.lynch@cleantechcapitaladvisors.com

London

CleanTech Capital Advisors Ltd.

15 Old Bailey London EC4M 7EF +44 203 883 2937

Paris

CleanTech Capital Advisors SAS

38 Boulevard Marbeau 75116 Paris

+33 1 758 34004